King's Total Domination Number on the Square of Side n
نویسندگان
چکیده
A set S V is a dominating set of a graph G = (V;E) if each vertex in V is either in S or is adjacent to a vertex in S. A vertex is said to dominate itself and all its neighbors. The domination number (G) is the minimum cardinality of a dominating set of G. In terms of a chess board problem, let Xn be the graph for chess pieceX on the square of side n. Thus, (Xn) is the domination number for chess piece X on the square of side n. In 1964, Yaglom and Yaglom established that (Kn) = n+2 3 2 : This extends to (Km;n) = m+2 3 n+2 3 for the rectangular board. A set S V is a total dominating set of a graph G = (V;E) if each vertex in V is adjacent to a vertex in S. A vertex is said to dominate its neighbors but not itself. The total domination number t (G) is the minimum cardinality of a total dominating set of G. In 1995, Garnick and Nieuwejaar conducted an analysis of the total domination numbers for the king's graph on the m n board. In this paper we note an error in one portion of their analysis and provide a correct general upperbound for t (Km;n) : Furthermore, we state improved upperbounds for t (Kn).
منابع مشابه
Lower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملOn trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
متن کاملDOMINATION NUMBER OF TOTAL GRAPH OF MODULE
Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...
متن کاملTotal domination in cubic Knodel graphs
A subset D of vertices of a graph G is a dominating set if for each u ∈ V (G) \ D, u is adjacent to somevertex v ∈ D. The domination number, γ(G) ofG, is the minimum cardinality of a dominating set of G. A setD ⊆ V (G) is a total dominating set if for eachu ∈ V (G), u is adjacent to some vertex v ∈ D. Thetotal domination number, γt (G) of G, is theminimum cardinality of a total dominating set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 113 شماره
صفحات -
تاریخ انتشار 2014